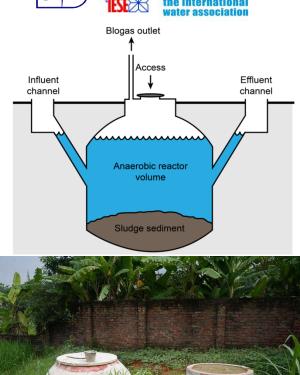
IWA World Water Congress & Exhibition 2024

11-15 August 2024 | Toronto – Canada

Pretreatment of Organic Waste and Sewage Sludge for Biogas and Methane Production Improvement in Anaerobic Digestion in Hanoi, Vietnam

PRESENTER: ALLIE (MINH-ANH) NGUYEN Authors: Dr. Duc Manh Ha, Dr. Viet-Anh Nguyen^{*}, Dr. Thu Hang Nguyen (*corresponding author)



inspiring change

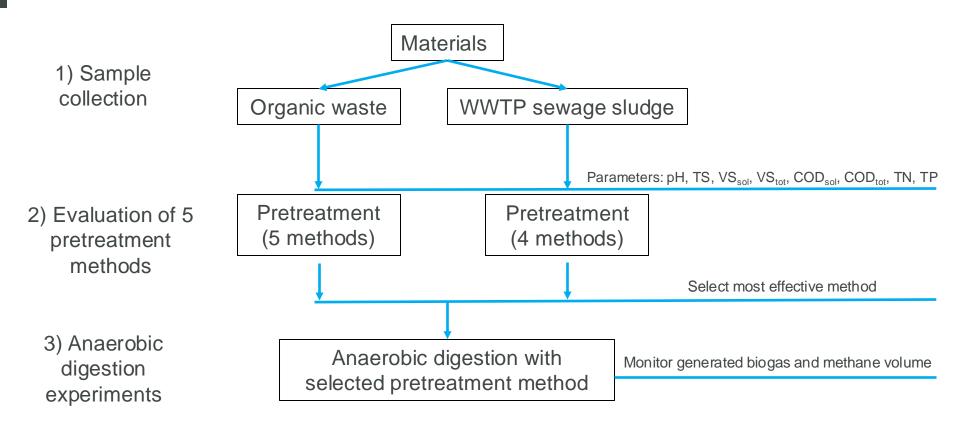
inspiring change

INTRODUCTION

- Rapid-growing population and urbanization in Vietnam, with increasing demand to treat produced municipal solid waste and sludge.
 - Current methods: Incineration, landfilling \rightarrow Not optimum.
- Alternative method: Anaerobic digestion (AD)
 - Treat sewage sludge and organic municipal solid waste.
 - Limitations: Traditionally low efficiency (30-50%) and nonuniform biogas production performance among different waste resources.
 - Pretreatment methods can be performed to improve performance and biogas yield.

CHALLENGES

- Comprehensive research on hydrolysis improvement in Vietnam has not yet been achieved.
- Varying components of organic waste in municipal waste and sewage sludge for anaerobic digestion:
 - Low concentration of organic and degradable matter in sewage sludge resulting from combined sewage system in most Vietnamese urban areas.
 - High lignin and cellulose content in organic municipal waste, which are poorly digested by biological processes.
 - Human habits: traditional markets, diets, lack of garbage source-sorting.


RESEARCH OBJECTIVES

- 1. Determine the properties of organic municipal solid waste and sewage sludge in Hanoi, Vietnam.
- 2. Investigate the efficacy of five pretreatment methods on enhancing solubilization, biodegradability, and energy recovery ability of these waste streams.

MATERIALS AND METHODS

MATERIALS AND METHODS (CONT.)

- Materials:
 - Organic fraction of municipal solid waste collected from four farmers' markets in Hanoi, mixed homogenously.
 - Sewage sludge from the concentrated sediment tank in Bac Ninh WWTP, Hanoi.
 - Inoculum for AD tests from lab-scale 10 L anaerobic digester, grown for 1 year.

MATERIALS AND METHODS (CONT.)

Pretreatment methods:

Mechanical	Thermal	Alkaline	Thermal Alkaline	Microwave
 Mix and grind substances with a blender (600W) for 15 minutes Only for organic waste 	90°C for 10 minutes	2M sodium hydroxide (NaOH) to reach pH = 8.5(±0.1)	 2M sodium hydroxide (NaOH) at the start of autoclaving 90°C and pH = 8.5(±0.1) for 10 minutes 	Microwave (800W) for 30 seconds

MATERIALS AND METHODS (CONT.)

(B), 35°C

NADH (1B')

(3B)

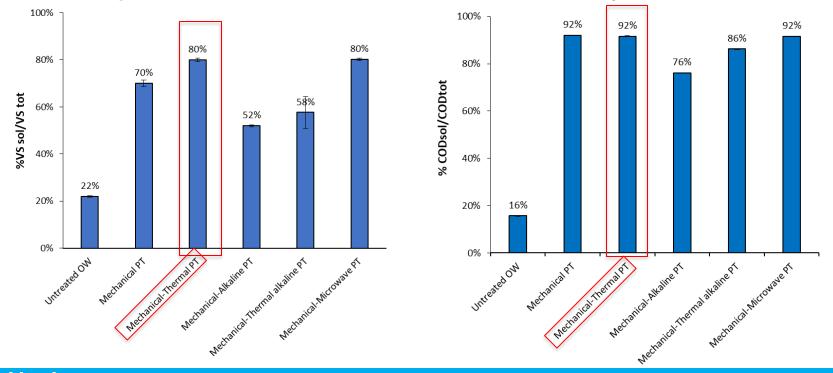
- Batch anaerobic biodegradability test:
 - Biogas (A) and methane (B) production measurement

(1B)

inspiring change

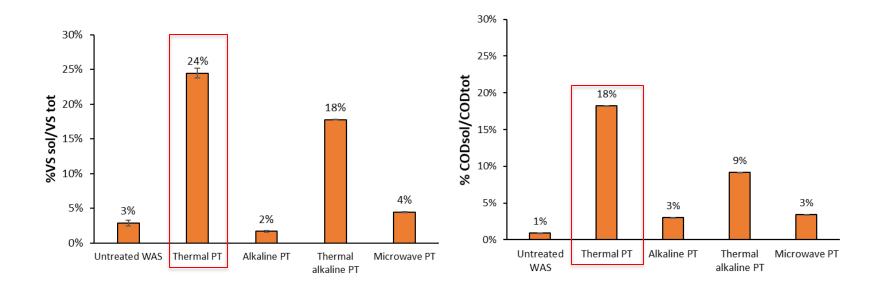
(1A)

(A), 35°C

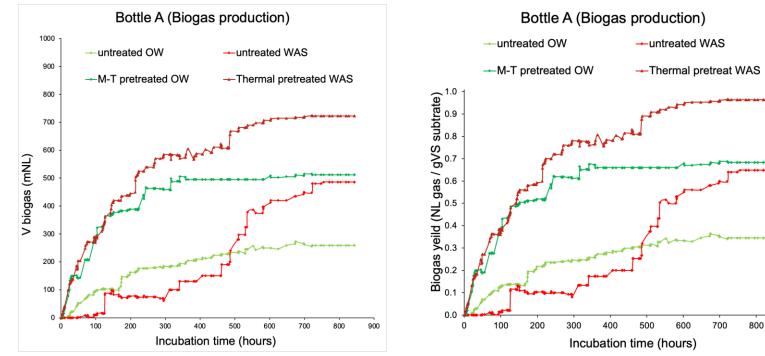

Organic waste (OW) and wastewater sludge (WAS) characteristics:

Param	eter	OW	WAS	Organic Waste (OW) pH
рН		5.6±0.1	7.1±0.1	10 9 8.5 8.59 8 7 7 5 5.64
TS	(g/kg)	142.2±0.5	20.2±1.5	E 6 5.64 5.21 5.16 4.8 5 5 4 4.8
VS	(g/kg)	128.4±0.8	14.6±0.2	
VS _{sol}	(g/kg)	2.82±0.1	0.43±0.04	Untreated Mechanical PT Thermal PT Alkaline PT Thermal Microwave PT alkaline PT Sewage Sludge (WAS) pH
COD	(g/kg)	179.3±0.3	23.6±0	10 9 8.5 8.56 8 7.07 7.32 7.14
COD _{sol}	(g/kg)	2.86±0.08	0.24±0.02	7 6 玉 5
TN _{sol}	(g/kg)	2.8±0	0.95±0	4 3 2
P (as PO ₄ ³⁻)	(g/kg)	0.45±0	0.7±0	0 Untreated Thermal PT Alkaline PT Thermal alkaline Microwave PT PT

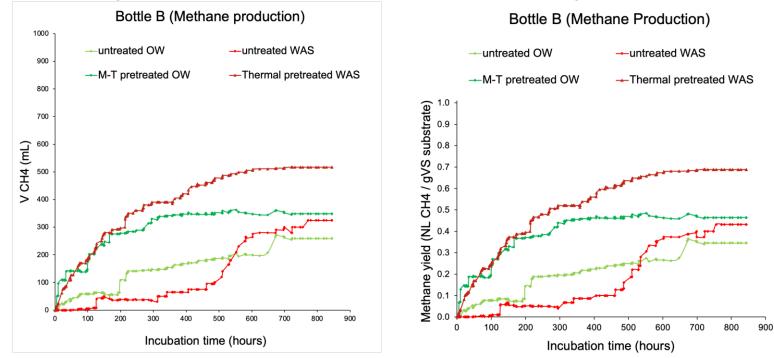
inspiring change



Effect of pretreatment methods on OW solubility:



Effect of pretreatment methods on WAS solubility:


Effect of pretreatment methods on biogas production:

900

Effect of pretreatment methods on methane production:

CONCLUSIONS

- All pretreatment methods increased the solubility of organic waste and sewage sludge, with thermal pretreatment was the most efficient out of the five methods investigated.
- Pretreatment methods did not affect the pH of samples.
- Application of OW and WAS pretreatment in anaerobic digestion increased biogas and methane production by 1.5 to 2 times.

➔ Pretreatment is recommended for enhancing energy recovery in anaerobic digestion of organic waste and sewage sludge.

Acknowledgement:

- Core research team ARS at HUCE
- Colleagues from IESE, HUCE

THANK YOU VERY MUCH!

Contact details:

Allie (Minh-Anh) Nguyen^{1,2}, Duc Manh Ha¹, Viet-Anh Nguyen^{1*}, Thu Hang Duong³ ¹Institute of Environmental Science and Engineering (IESE), Hanoi University of Civil Engineering, 55 Giai Phong, Hai Ba Trung district, Hanoi, Vietnam ² Department of Civil and Environmental Engineering, University of California, Berkeley, California, USA ³Water Supply and Sanitation Department, Hanoi University of Civil Engineering, 55 Giai Phong, Hai Ba Trung district, Hanoi, Vietnam

*Corresponding author email: anhnv@huce.edu.vn

